Axial guanine binding to a diplatinum(III) core

Gunnar Kampf,*a* **Michael Willermann,***a* **Ennio Zangrando,***b* **Lucio Randaccio***b* **and Bernhard Lippert****a*

a Fachbereich Chemie, Universität Dortmund, 44221 Dortmund, Germany. E-mail: lippert@pop.uni-dortmund.de b Dipartimento di Scienze Chimiche, Universitá di Trieste, 34127 Trieste, Italy

Received (in Cambridge, UK) 2nd February 2001, Accepted 12th March 2001 First published as an Advance Article on the web 30th March 2001

The preparation, crystal structure and NMR spectroscopic properties of a cisplatin-derived diplatinum(III) complex is **reported which contains two bridging 1-methylcytosinato nucleobases in mutual** *head–tail* **orientation and in addition two axially bound 9-ethylguanine nucleobases.**

Reactions of di-, rather than mononuclear metal antitumor complexes with nucleobases or DNA, in which the integrity of the dimetal core is retained, have recently attracted attention. Examples are nucleobase adducts of dinuclear $Pt(II)$ complexes with flexible aliphatic $(i)^1$ or rigid heterocyclic linkers $(ii)^2$ and

'lantern' type dirhodium (n) tetracarboxylates (iii) ³. In the latter case nucleobase binding can occur both through the axial positions⁴ or with replacement of two bridging ligands.⁵ Here we report on a diplatinum(III) complex (iv) which binds two guanine nucleobases with high efficiency through the two axial positions of the dimetal core. The novelty of (**iv**) relates to Pt binding through guanine- N^7 , a pattern ruled out in the case of dimetal tetracarboxylates (**iii**) because of repulsive interactions between O⁶ of guanine and the four oxygen donor atoms in the metal plane.6 In contrast, axial binding of adenine nucleobases $(via \nightharpoonup \hat{N}^7)$ was rationalized on the basis of favourable H bonding interactions with the MO₄ plane.^{3–5} The observation by Aoki *et al.*7 on axial theophylline-N7 binding to a mixed-valence $tetrakis(\mu-acetamidato)rhodium(\pi)-rhodium(\pi))$ cation was a logical consequence of the partial replacement of O atoms by NH functions and the possibility of interligand H bond formation. Consistent with this view, the presence of three H donor sites (NH, two NH_3) in the $\hat{M}N_4$ faces of the $diplatinum(m)$ core applied in this study proved particularly advantageous for guanine binding.

The title compound was prepared as follows: The diplatinum(II) precursor *cis*-[{Pt(NH₃)₂(μ -mcyt- N^3 - N^4 }}₂]²⁺ (**1**)⁸ con-

taining two bridging 1-methylcytosinato (mcyt) model nucleobases in *head–tail* arrangement was oxidized to the diplatinum(III) complex cis -[XPt(NH₃)₂(μ -mcyt- N^3 - N^4)₂- $Pr(NH_3)_2Y/(Z)_n$ (2).⁹ Subsequently, the axial ligands X and Y were replaced by 9-ethylguanine (Hetgua) by adding this nucleobase to an aqueous solution of **2** ($pH \approx 2$) to give *cis*- $[{Pt(NH_3)_2(Hetgua-N^7)(mcyt-N^3-N^4)}_2]^{4+}$ (3). The cation of the title compound 3 [ClO₄]₄·5H₂O^{10,11} is depicted in Fig. 1. Salient structural features are as follows: the Pt–Pt bond length of $2.5868(8)$ Å is in the typical range for single bonds of diplatinum(III) complexes derived from cisplatin.¹² The two Pt planes form an angle of $20.3(1)^\circ$, and the torsional angle about the Pt–Pt vector is $26.9(2)°$ (N(3C)–Pt–Pt–N(4C)) and $33.2(2)°$ (N2–Pt–Pt–N1). Pt–N distances in the Pt plane are normal [Pt– N(4C), 2.002(5); Pt–N(3C), 2.043(5); Pt–N(2), 2.056(5) Å] or only slightly elongated [Pt–N(1), 2.070(5) Å]. However, the Pt– N^7 bond [2.189(6) \AA] is markedly longer than those typically seen in $Pt(II)^{13}$ and $Pt(IV)^{14}$ complexes of guanine. The guanine ligand is oriented in such a way, that $O⁶$ escapes any steric clash with O² of the mcyt ligand by H bond formation with the two NH₃ groups (N1…O6G, 2.854(8); N2…O6G, 3.101(7) Å; angles: N1–H1A…O6G, 159.8(4); N2–H2B…O6G, $N1-H1A\cdots$ O6G, $144.2(4)°$].

Compound **3** is stable in aqueous solution for at least 7 d. The ¹⁹⁵Pt NMR signal at -816 ppm is consistent with a Pt(III) oxidation state and the singlet indicates that the two Pt centers have identical environments. A ¹⁹⁵Pt ¹H HMQC experiment reveals ⁴*J* coupling between ¹⁹⁵Pt and H5 of mcyt (9.2 Hz), ⁵*J* coupling between 195Pt and H6 of mcyt (8.3 Hz), as well as 3*J* coupling between 195Pt and H8 of Hetgua (5.2 Hz). While coupling with the cytosine protons are in the expected range,15 it is noted that 3*J* coupling to guanine H8 is rather small as compared to guanine bases bonded to Pt(II) (20–32 Hz16) and even to $Pt(rv)$ (12 Hz¹⁴). It is a consequence of the apparent weak binding of the axial guanine ligands. This situation contrasts the strong binding of a single, C5 bonded 1-methyluracilyl entity to a diplatinum(III) core,¹⁷ which has some

Fig. 1 Crystal structure of cation of *cis*-[{Pt(NH₃)₂(Hetgua- N^7)(mcyt- N^3 -*N*4)}2][ClO4]4·5H2O(**3**).

structural similarity with the present case as it is another example of a diplatinum(III) complex carrying a nucleobase in an axial position.

The affinity of **2** for the guanine model nucleobase is retained in reactions with the corresponding nucleoside $2'$ -deoxyguanosine and the nucleotide 5'-dGMP. Binding occurs rapidly, as evident from 1H NMR spectroscopy. Doubling of most resonances is consistent with formation of diastereomers upon combination of the chiral *head–tail* species **2** with the chiral nucleoside/nucleotide.15 The guanosine adduct is stable in aqueous solution for approximately 1 d, whereas the $5'$ -GMP compound is stable for at least one week (*e.g.* 195Pt NMR resonance at δ -804 ppm for 5'-dGMP complex). Afterwards the 1H NMR spectra of both species become quite complicated. It is unclear at present whether oxidative degradation processes of either the purine skeleton and/or the sugar moieties take place similarly to the situations encountered with $Au(m)^{21}$ and high valent Mn,²² Ni,²³ or Ru²⁴ species.

Attempts to bind model nucleobases other than guanine, *e.g.* 1-methylcytosine, 1-methyluracil or 9-methyladenine to **2** under comparable conditions, failed. Thus **2** appears to be highly selective for guanine nucleobases. Whether this feature may be exploited to generate a chemical probe for guanine in nucleic acids remains to be seen.

This work was supported by the Vigoni programme and the Fonds der Chemischen Industrie.

Notes and references

- 1 N. Farrell, Y. Qu, U. Bierbach, M. Valsecchi and E. Menta, in *Cisplatin: Chemistry and Biochemistry of a Leading Anticancer Drug*, ed. B. Lippert, VCHA, Zürich and Wiley-VCH, Weinheim, 1999, p. 479.
- 2 S. Komeda, H. Ohishi, H. Yamane, M. Harikawa, K.-I. Sakaguchi and M. Chikuma, *J. Chem. Soc., Dalton Trans.*, 1999, 2959.
- 3 J. M. Asara, J. S. Hess, E. Lozada, K. R. Dunbar and J. Allison, *J. Am. Chem. Soc.*, 2000, **122**, 8, and references therein.
- 4 J. R. Rubin, T. P. Haromy and M. Sundaralingam, *Acta Crystallogr.*, 1991, **C47**, 1712.
- 5 C. A. Crawford, E. F. Day, V. P. Saharan, K. Folting, J. C. Huffman, K. R. Dunbar and G. Christou, *Chem. Commun.*, 1996, 1113; K. R. Dunbar, J. H. Matonic, V. P. Saharan, C. A. Crawford and G. Christou, *J. Am. Chem. Soc.*, 1994, **116**, 2201.
- 6 An example of an unsubstituted guanine dianion binding to a tetrakis(phosphato) bridged diplatinum(III) species has been reported which, however, is not relevant to this discussion as binding to Pt occurs through N9: R. El-Mehdawi, F. R. Fronczek and D. M. Roundhill, *Inorg. Chem.*, 1986, **25**, 3714. Similar arguments apply to N9 bonded theophylline and caffeine complexes of tetrakis(acetato)dirhodium (II) complexes: K. Aoki and H. Yamazaki, *J. Chem. Soc., Chem. Commun.*, 1980, 186.
- 7 K. Aoki, M. Hoshino, T. Okada, H. Yamazaki and H. Sekizawa, *J. Chem. Soc., Chem. Commun.*, 1986, 314.
- 8 R. Faggiani, B. Lippert, C. J. L. Lock and R. A. Speranzini, *J. Am. Chem. Soc.*, 1981, **103**, 1111.
- 9 **2a**: $X = NO_2^-$, $Y = H_2O$, $Z = ClO_4^-$, $n = 3$; **2b**: $X = Y = ONO_2^-$, $Z = NO_3^-$, $n = 2$; **2c**: $X = Y = H_2O$, $Z = ClO_4^-$, $n = 4$. All three compounds have been characterized by X-ray crystallography. Details will be reported elsewhere. Oxidation of **1** was achieved by any of the following oxidants: $HNO₃$, $HClO₄$, or $K₂S₂O₈$. In a typical experiment, **1** (82.26 mg; 0.095 mmol) is dissolved in concentrated HClO₄ (1.5 ml), the orange solution then diluted with 3.5 ml H_2O and allowed to slowly evaporate. Orange crystals of **2a** are collected in *ca.* 72% yield. 1H NMR (200 MHz, D₂O, δ /ppm) of **2a**: 7.35 (d, ³J = 7.4 Hz H6), 7.31 (d, ³J = 7.4 Hz H6), 6.04 (d, 3*J* = 7.4 Hz H5), 5.91 (d, *3J* = 7.4 Hz H5), 3.40 (s, CH₃), 3.33 (s, CH₃). ¹⁹⁵Pt-NMR (42.998 MHz, D₂O δ /ppm): -1000, $-445.$
- 10 Synthesis:10.9 mg (0.06 mmol) of 9-ethylguanine is added to a solution of 32.9 mg (0.03 mmol) of **2a** in water (1 ml). Upon slow evaporation compound **3** crystallizes and is collected as several fractions to give 26 mg (0.017 mmol, 58% yield) **3**. Anal. calcd. for **3**, $C_{24}H_{52}N_{20}O_{25}Cl_{4}Pt_{2}$ $(1552.84 \text{ g mol}^{-1})$: C 18.57 ; H 3.38, N 18.04%; found: C 18.8, H 3.1, N 18.2%.
- 11 Crystal data for **3**: $C_{24}H_{52}N_{20}O_{25}Cl_{4}Pt_{2} M_{r} = 1552.84$, monoclinic, space group *C*2/m, $a = 17.574(4)$, $b = 20.356(4)$, $c = 13.815(3)$, $\beta =$ 91.69(3), $\hat{V} = 4940(2) \text{ Å}^3$, $Z = 8$, $D_c = 2.088 \text{ g cm}^{-3}$, $\mu\text{(Mo-Kα)}$ 5.978 mm⁻¹, $T = 293(2)$ K, Enraf-Nonius–KappaCCD¹⁸ with graphite monochromator, φ-scans, 6661 independent reflections, $R_{int} = 0.044$, structure solved by standard Patterson methods¹⁹ and refined by full matrix least squares on *F*2 using SHELXL-9720. All non-hydrogen atoms were refined anisotropically. Hydrogens were placed at calculated positions and not further refined. One perchlorate is heavily disordered. 368 refined parameters gave $R_1 = 0.0428$ and $wR_2 =$ 0.1104 for 4665 reflections with $I \ge 2\sigma(I)$ and $R_1 = 0.0673$ and $wR_2 =$ 0.1163 for all data, minimum and maximum features in difference Fourier map were 2.61 and -2.19 e \AA^{-3} (near Cl3). CCDC 157798.
- 12 B. Lippert, *Prog. Inorg. Chem.*, 1989, **37**, 1.
- 13 E. Zangrando, F. Pichierri, L. Randaccio and B. Lippert, *Coord. Chem. Rev.*, 1996, **156**, 275.
- 14 G. Frommer, H. Preut and B. Lippert, *Inorg. Chim. Acta*, 1992, **193**, 111.
- 15 T. Wienkötter, M. Sabat, G. Fusch and B. Lippert, *Inorg. Chem.*, 1995, **34**, 1022.
- 16 G. Raudaschl and B. Lippert, *Inorg. Chim. Acta*, 1983, **80**, L49.
- 17 H. Schöllhorn, U. Thewalt and B. Lippert, *J. Chem. Soc., Chem. Commun.*, 1986, 258.
- 18 NONIUS BV, KappaCCD package, Röntgenweg 1, P.O.Box 811, 2600 AV Delft, Netherlands; Z. Otwinowsky and Minor, *Processing of X-ray Diffraction Data Collected in Oscillation Mode*, Methods in Enzymology, ed., C. W. Carter, Jr. and R. M. Sweet, Academic Press, 1996, **276**, 307.
- 19 G. M. Sheldrick, *Acta Crystallogr., Sect. A*, 1990, **46**, 467.
- 20 G. M. Sheldrick, SHELXL-97, Program for crystal structure refinement, University of Göttingen, Germany, 1997.
- 21 A. Schimanski, E. Freisinger, A. Erxleben and B. Lippert, *Inorg. Chim. Acta*, 1998, **283**, 223.
- 22 G. Pratviel, J. Bernadou and B. Meunier, *Angew. Chem., Int. Ed. Engl.*, 1995, **34**, 746 and refs. cited.
- 23 H.-C. Shih, N. Tang, C. J. Burrows and S. E. Rokita, *J. Am. Chem. Soc.*, 1998, **120**, 3284.
- 24 P. J. Carter, C.-C. Cheng and H. H. Thorp, *Inorg. Chem.*, 1996, **35**, 3348.