
  

Axial guanine binding to a diplatinum(III) core
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The preparation, crystal structure and NMR spectroscopic
properties of a cisplatin-derived diplatinum(III) complex is
reported which contains two bridging 1-methylcytosinato
nucleobases in mutual head–tail orientation and in addition
two axially bound 9-ethylguanine nucleobases.

Reactions of di-, rather than mononuclear metal antitumor
complexes with nucleobases or DNA, in which the integrity of
the dimetal core is retained, have recently attracted attention.
Examples are nucleobase adducts of dinuclear Pt(II) complexes
with flexible aliphatic (i)1 or rigid heterocyclic linkers (ii),2 and

‘lantern’ type dirhodium(II) tetracarboxylates (iii).3 In the latter
case nucleobase binding can occur both through the axial
positions4 or with replacement of two bridging ligands.5 Here
we report on a diplatinum(III) complex (iv) which binds two
guanine nucleobases with high efficiency through the two axial
positions of the dimetal core. The novelty of (iv) relates to Pt
binding through guanine-N7, a pattern ruled out in the case of
dimetal tetracarboxylates (iii) because of repulsive interactions
between O6 of guanine and the four oxygen donor atoms in the
metal plane.6 In contrast, axial binding of adenine nucleobases
(via N7) was rationalized on the basis of favourable H bonding
interactions with the MO4 plane.3–5 The observation by Aoki et
al.7 on axial theophylline-N7 binding to a mixed-valence
tetrakis(m-acetamidato)rhodium(II)-rhodium(III) cation was a
logical consequence of the partial replacement of O atoms by
NH functions and the possibility of interligand H bond
formation. Consistent with this view, the presence of three H
donor sites (NH, two NH3) in the MN4 faces of the
diplatinum(III) core applied in this study proved particularly
advantageous for guanine binding.

The title compound was prepared as follows: The diplati-
num(II) precursor cis-[{Pt(NH3)2(m-mcyt-N3-N4)}2]2+ (1)8 con-

taining two bridging 1-methylcytosinato (mcyt) model nucleo-
bases in head–tail arrangement was oxidized to the
diplatinum(III) complex cis-[XPt(NH3)2(m-mcyt-N3-N4)2-
Pt(NH3)2Y](Z)n (2).9 Subsequently, the axial ligands X and Y
were replaced by 9-ethylguanine (Hetgua) by adding this
nucleobase to an aqueous solution of 2 (pH ~ 2) to give cis-
[{Pt(NH3)2(Hetgua-N7)(mcyt-N3-N4)}2]4+ (3). The cation of the

title compound 3 [ClO4]4·5H2O10,11 is depicted in Fig. 1. Salient
structural features are as follows: the Pt–Pt bond length of
2.5868(8) Å is in the typical range for single bonds of
diplatinum(III) complexes derived from cisplatin.12 The two Pt
planes form an angle of 20.3(1)°, and the torsional angle about
the Pt–Pt vector is 26.9(2)° (N(3C)–Pt–Pt–N(4C)) and 33.2(2)°
(N2–Pt–Pt–N1). Pt–N distances in the Pt plane are normal [Pt–
N(4C), 2.002(5); Pt–N(3C), 2.043(5); Pt–N(2), 2.056(5) Å] or
only slightly elongated [Pt–N(1), 2.070(5) Å]. However, the Pt–
N7 bond [2.189(6) Å] is markedly longer than those typically
seen in Pt(II)13 and Pt(IV)14 complexes of guanine. The guanine
ligand is oriented in such a way, that O6 escapes any steric clash
with O2 of the mcyt ligand by H bond formation with the two
NH3 groups (N1…O6G, 2.854(8); N2…O6G, 3.101(7) Å;
angles: N1–H1A…O6G, 159.8(4); N2–H2B…O6G,
144.2(4)°].

Compound 3 is stable in aqueous solution for at least 7 d. The
195Pt NMR signal at 2816 ppm is consistent with a Pt(III)
oxidation state and the singlet indicates that the two Pt centers
have identical environments. A 195Pt 1H HMQC experiment
reveals 4J coupling between 195Pt and H5 of mcyt (9.2 Hz), 5J
coupling between 195Pt and H6 of mcyt (8.3 Hz), as well as 3J
coupling between 195Pt and H8 of Hetgua (5.2 Hz). While
coupling with the cytosine protons are in the expected range,15

it is noted that 3J coupling to guanine H8 is rather small as
compared to guanine bases bonded to Pt(II) (20–32 Hz16) and
even to Pt(IV) (12 Hz14). It is a consequence of the apparent
weak binding of the axial guanine ligands. This situation
contrasts the strong binding of a single, C5 bonded 1-methyl-
uracilyl entity to a diplatinum(III) core,17 which has some

Fig. 1 Crystal structure of cation of cis-[{Pt(NH3)2(Hetgua-N7)(mcyt-N3-
N4)}2][ClO4]4·5H2O(3).
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structural similarity with the present case as it is another
example of a diplatinum(III) complex carrying a nucleobase in
an axial position.

The affinity of 2 for the guanine model nucleobase is retained
in reactions with the corresponding nucleoside 2A-deoxyguano-
sine and the nucleotide 5A-dGMP. Binding occurs rapidly, as
evident from 1H NMR spectroscopy. Doubling of most
resonances is consistent with formation of diastereomers upon
combination of the chiral head–tail species 2 with the chiral
nucleoside/nucleotide.15 The guanosine adduct is stable in
aqueous solution for approximately 1 d, whereas the 5A-GMP
compound is stable for at least one week (e.g. 195Pt NMR
resonance at d 2804 ppm for 5A-dGMP complex). Afterwards
the 1H NMR spectra of both species become quite complicated.
It is unclear at present whether oxidative degradation processes
of either the purine skeleton and/or the sugar moieties take place
similarly to the situations encountered with Au(III)21 and high
valent Mn,22 Ni,23 or Ru24 species.

Attempts to bind model nucleobases other than guanine, e.g.
1-methylcytosine, 1-methyluracil or 9-methyladenine to 2
under comparable conditions, failed. Thus 2 appears to be
highly selective for guanine nucleobases. Whether this feature
may be exploited to generate a chemical probe for guanine in
nucleic acids remains to be seen.
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